

WP3 - Smarter LC: development and Integration of technical solutions

WP Leader: NTNU

Cerema, CERTH, Commsignia, Ifsttar, NeoGLS, NTNU, RWTH, SNCF, UIC, UTBM,

Elias Kassa, Professor

Norwegian University of Science and
Technology (NTNU)

Objectives

To develop technological solutions to improve safety at level crossings as well as at working zones through *sharing information* and *giving warnings* to trains/vehicles approaching/arriving to level crossings and to workers at or near train passing zones

Specific objectives

- Advanced video surveillance system for modeling and analyzing LC users' behaviour
- Evaluate various safety enhancement techniques
- △ Develop Optimized Automatic/Smart Incident Detection (AID) system
- Develop smart sensor technologies for monitoring of LC infrastructure
- ▲ Develop systems to transmit and share the risks and hazard information detected at LCs
- ▲ V2X-based sensing, actuation and information sharing techniques to detect and forecast train arrivals and broadcast
- △ Automatic closure of level crossing triggered by the train geolocalisation SAFER-LC Midterm Conference, Madrid, 10 Oct 2018

Tasks and Involved Partners

Task	Leader	Partners	Duration
Task 3.1 – Risk evaluation	UТВМ	CEREMA, DLR, NTNU, CERTH, COMM, UIC, INTADER	M5-M30
Task 3.2 — Smart detection system	CEREMA	UTBM, COMM, VTT, NTNU, IFSTTAR, CERTH, UIC, SNCF, NeoGLS, INTADER	M5-M30
Task 3.3 – Monitoring and remote maintenance	NTNU	CEREMA, IFSTTAR, UTBM, CERTH, NeoGLS, COMM	M7-M28
Task 3.4 – Communication systems for cross-modal information sharing	IFSTTAR	VTT, COMM, NeoGLS , NTNU, CEREMA, CERTH, SNCF, TRAINOSE	M5-M24

Interaction within & with other WPs

Task 3.1 – Risk evaluation

Task leader: *UTBM*, *Cerema*,

Objective

Provide a component of SAFER-LC Toolkit with semi-automatic and fully-automatic risk assessment

- △ Identifying and understanding the dynamics of hazardous situations in LC environments
- ▲ Extraction and description of dangerous behaviour models of user-to-user and user-toinfrastructure (LC) interactions
- ▲ Extracting quantitative information (number of occurrences of each dangerous behavior or interaction and classification)

Task 3.1 – Risk evaluation

Two main steps

- Knowledge extraction from video data
 - Scene semantic segmentation (Machine learning /deep learning, background subtraction techniques)
 - △Users detection and recognition
 - ▲Infrastructure objects recognition
 - ▲Barriers state recognition
 - △ Users trajectory extraction (objects tracking, matching, optical flow)
- 2. Abnormal situations classification and user behavioural modeling
 - △ Sequence segmentation (detection of state changing / important moment detection)
 - Analysis of the targets (vehicle, truck, pedestrian, etc.) involved in each detected subsequence
 - Classification of abnormal situations into different pre-defined models (zigzagging, obstacle, stopped vehicles line, etc.)

Generating data from simulation

Motivation:

- Real life video capture may not contain dangerous behaviors
- It takes a long time before data are available
- Privacy and confidentiality issues

Solution: Generate realistic looking videos with/without dangerous events using simulation

- Multi-agent based /behavioural simulation
- Vehicle dynamics simulation
- Weather and lighting simulation

Simulator

- New vehicle dynamics model
- Provides better stability at high speed (>60 kph)
- Better tire friction model

Risk Evaluation System architecture

User detection

- Vehicle detection
- Light Signal state detection

User detection and tracking

Barrier detection (Scene 1)

Barrier detection (Scene 2)

• Robust as long as lighting conditions are not too poor

SAFER-LC Midterm Conference, Madrid, 10 Oct 2018

Risk Evaluation System architecture

Task 3.2 Video sensing and communication

Mid term conference

Cerema, UTBM, NeoGLS, Ifsttar, RWTH,

Objective

- ▲ Identification of principle factors of accident at LC
- A Real time detection, recognition and evaluation of potentially dangerous situations at level crossing
- △ Sharing alert messages by a communication system
- A Research and experimentation of technical solutions

Initial idea

Global architecture

SAFER-LC Midterm Conference, Madrid, 10 Oct 2018

Video architecture

Surveillance camera

Datasets

♦ Cerema dataset 1

♦ Cerema dataset 2

Montaudran dataset

SAFER-LC Midterin Conference, Mauria, 10 Oct 2018

Smart detection system modules

Smart detection system

1) Data acquisition

2) Object detection

3) Object tracking

Object location at time t

Object location at time t+dt

Object tracking

Object trajectory

4) Object classification

Object location

5) Scenario detection

Definition of possible scenarios to test

Open barriers

scenario 1: vehicle stopped at LC

scenario 2: vehicles crossing the LC (moving forward and backward)

scenario 3: pedestrians crossing the LC

scenario 4: pedestrians and vehicles crossing the LC

Definition of possible scenarios to test

Closed barriers

scenario 5: vehicle stopped at the LC (emergency exit from the vehicle)

scenario 6: vehicles crossing the LC (zigzagging)

scenario 7: pedestrian crossing the LC

scenario 8: pedestrians and vehicles crossing the LC

Smart detection system interface

Interaction with RSU

Evaluation

Detection accuracy

Detection rate

Processing time

Sample size

Usability

Stability

Environment conditions for processing

Ability to work in hard conditions

Ability to transmit the information

Test site : Aachen

Aerial image of the test site
SAFER-LC Midterm Conference, Madrid, 10 Oct 2018

Road/rail intersection area at Aachen test site

WP3 and 4- Cerema NC Test Site

Tasks 3.3 Monitoring and remote maintenance
Mid-term conference
Madrid – 10 october 2018

Delphine Jacqueline, Carl Calmo CEREMA France

Elias Kassa NTNU Norway

Context

What's the problem?

Conflict point with LC's longitudinal section

→ dramatic consequences
(blocked truck, multi-vehicle collisions...)

How is this situation possible?

Topographic profil incomptible due to design or LC deterioriation

How is it possible to provide solution?

Detect all points of conflict with better precision of the profile surveys

What's challenge for infrastructure managers:

- → to have a mobile, non-intrusive system that does not require intervention on the part of a road or rail agent, enabling acquisitions at 30-200 metres on either side of the level crossing
- → to have a solution developed for preventive maintenance (road/railway works or growth vegetation and snowfall)

Experimental level crossing - Cerema Rouen test site

Two approaches will be followed for the real time monitoring:

Photogrammetric device

- 1. Photogrammetric method Measure displacements to monitor infrastructure surface condition
- ightarrow complemented with thermal-infrared measure to detect road fissures
- 2. Vibration Measure accelerations to assess the LC components status and set alert thresholds

<u>Legend</u>:

- Stabilizer
 - Carbon bar
 - Camera
 - Accelerometer

Test site configurations at Cerema Rouen

Current mock-up's examples

Thanks for your attention

Deliverables

Deliverable

- △ D_{3.1}. Proof-of-concept on data acquisition platform for the AID system (CEREMA) July 2018
- △ D_{3.2}. Report on communication and warning system (IFSTTAR) April 2019
- △ D_{3.3}. Guidelines for installation of smart sensors for monitoring of LC infrastructure (NTNU) April 2019
- △ D_{3.4}. Report on risk evaluation system and use cases for pilot test (UTBM) October 2019
- △ D_{3.5}. Report on smart detection system (CEREMA) October 2019

