WP4: Lab tests, field implementation and evaluation

Jan Grippenkoven - DLR
Marco Petrelli – Uniroma3
Anne Silla - VTT
J. M. Salanova Grau, N. Boufidis- CERTH-HIT

Presenter: Neofytos Boufidis (CERTH-HIT)
Objective

- **To evaluate** the **positive** and **negative** impacts of **lab test** and **field implementations** executed within the SAFER-LC project

- **WP4 was finalized** in December 2019, and has produced the **following outputs**:

 I. Guidelines for the implementation of pilot tests
 II. Definition of evaluation framework to monitor and evaluate the pilot tests
 III. Pilot operation report
 IV. Results of the evaluation of the pilot tests
Implementation guidelines and evaluation framework

For each pilot site:

▲ General introduction and technical description
▲ Examples of safety measures that can be evaluated
▲ Description of data and indicators that can be assessed
▲ Technical details of tools to be used for data collection
▲ Guidelines to pilot implementation, operation and monitoring
▲ Prerequisites and boundary conditions of test site use
▲ Identification of relevant parameters and the feasibility of their collection

Description of KPIs:
- Technical
- Traffic
- Safety
- Business
- Human Behaviour

Identification of required data (with different alternatives)

Comparison of required data with capabilities of test sites
Piloted safety measures

- 17 measures were piloted
- Effect mechanisms:
 - Measures with mostly indirect safety effects
 - Passive LC signs, promoting correct behaviour and the dangers of LCs
 - Speed reduction measures
 - Active warnings, associated either with LC proximity, approaching trains or both
 - Measures improving detectability of train
SAFER-LC test sites

Simulation

- **Driving simulators** (DLR, SNCF)
- Two simulation environments (VTT)
- **Test-track pilot activities** (RWTH, CEREMA)
- **Self-driving vehicles** (VTT)
- **Test track under real rail environment** (VTT)

Field tests

- **Real-world pilot activities** (DLR, TRAINOSE, CERTH)
SAFER-LC test sites

Activity Type
- Simulation
- Test-track
- Real-world pilot

SAFER-LC workshop, Madrid, 5 February 2020
Germany

Aachen test site – Integration of multiple measures

Braunschweig test site

Tested measures (real-world)
- Amber blinking light with train pictogram (electronic sign)
- Message written on the road

Tested measures (simulation)
- Blinking lights drawing driver attention
- Improve train visibility using lights
- Noise-producing pavement
- Sign look for train

Tested measures (test-track)
- Smart Detection System
- Smart Communication System
- Alert to equipped vehicles
- Early train detection and hazard information

Activity Type
- Simulation
- Test-track
- Real-world pilot

SAFER-LC workshop, Madrid, 5 February 2020
France

Rouen test site

SNCF simulator, Chalon-sur-Saône

Tested measure (test-track)
- Monitoring and remote maintenance

Tested measures (simulator)
- Colored road markings
- Tunnel effect stick
- Rings
- Traffic lights
- Speed bump and flashing sticks
- Proximity message via in-vehicle device

Activity Type
- Simulation
- Test-track
- Real-world pilot

SAFER-LC workshop, Madrid, 5 February 2020
Finland

Tampere test site

Tested measure (simulation & test site)
- V2X messaging between automated vehicle and passive level crossings

Sääksjärvi test site

Tested measure (test track)
- Additional warning light system at front of the locomotive

Activity Type
- Simulation
- Test-track
- Real-world pilot
Greece

Thessaloniki test site

Tested measure (real-world)
• In-vehicle train and LC proximity alert

Activity Type
• Simulation
• Test-track
• Real-world pilot

SAFER-LC workshop, Madrid, 5 February 2020
Implementation and evaluation of pilots

▲ The aim was to pilot human-centered low-cost safety measures characterized as promising in previous WP.

▲ The status of each pilot was followed via Periodic Progress Report; updated every three months.

▲ Overview of piloted measure
▲ Evaluation data and methodology
▲ Evaluation results
▲ Discussion (lessons learned, recommendations, applicability to different circumstances, conclusions)
Estimation of safety potential: Definition of targeted LC accidents

<table>
<thead>
<tr>
<th>Variable</th>
<th>Details</th>
</tr>
</thead>
</table>
| Type of LC | ▪ Active LC with automatic user-side warning
 ▪ Active LC with automatic user-side protection (and warning)
 ▪ Active LC with automatic user-side protection and warning, and rail-side protection
 ▪ Active LC with manual user-side protection and/or warning
 ▪ Passive LC |
| Type of victim | ▪ Car drivers & passengers
 ▪ Moped riders & motorcyclists
 ▪ Pedestrians & cyclists
 ▪ Other |
| Type of behaviour | ▪ Situation awareness error
 ▪ Vehicle handling error
 ▪ Other human risk factor
 ▪ Vehicle risk factor
 ▪ Other |
Potentially prevented LC accidents

<table>
<thead>
<tr>
<th>Safety measure</th>
<th>Type of LC</th>
<th>Type of victim</th>
<th>Type of behaviour</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low (%)</td>
<td>High (%)</td>
<td>Low (%)</td>
<td>High (%)</td>
</tr>
<tr>
<td>Smart detection and communication system</td>
<td>56.1</td>
<td>56.1</td>
<td>97.4</td>
<td>100.0</td>
</tr>
<tr>
<td>V2X messaging system between AVs and passive LCs</td>
<td>39.8</td>
<td>39.8</td>
<td>53.4</td>
<td>53.4</td>
</tr>
<tr>
<td>Monitoring and remote maintenance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sign 'Look for train'</td>
<td>39.8</td>
<td>39.8</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Road markings</td>
<td>39.8</td>
<td>39.8</td>
<td>46.6</td>
<td>100.0</td>
</tr>
<tr>
<td>Coloured road markings</td>
<td>25.5</td>
<td>25.5</td>
<td>53.4</td>
<td>97.4</td>
</tr>
<tr>
<td>Speed bumps and flashing posts</td>
<td>25.5</td>
<td>25.5</td>
<td>53.4</td>
<td>60.2</td>
</tr>
<tr>
<td>Funnel effect pylons</td>
<td>25.5</td>
<td>25.5</td>
<td>53.4</td>
<td>60.2</td>
</tr>
<tr>
<td>Noise-producing pavement</td>
<td>39.8</td>
<td>70.5</td>
<td>53.4</td>
<td>60.2</td>
</tr>
<tr>
<td>Proximity message via in-vehicle device</td>
<td>25.5</td>
<td>25.5</td>
<td>53.4</td>
<td>60.2</td>
</tr>
<tr>
<td>Blinking amber light with train symbol</td>
<td>39.8</td>
<td>39.8</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Blinking lights drawing driver attention (Perilight)</td>
<td>39.8</td>
<td>39.8</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Traffic lights</td>
<td>25.5</td>
<td>25.5</td>
<td>53.4</td>
<td>97.4</td>
</tr>
<tr>
<td>In-vehicle train and LC proximity warning</td>
<td>43.9</td>
<td>100.0</td>
<td>53.4</td>
<td>60.2</td>
</tr>
<tr>
<td>Rings</td>
<td>25.5</td>
<td>25.5</td>
<td>53.4</td>
<td>60.2</td>
</tr>
<tr>
<td>Additional warning light system at front of the locomotive</td>
<td>39.8</td>
<td>39.8</td>
<td>53.4</td>
<td>97.4</td>
</tr>
<tr>
<td>Improved visibility using lights</td>
<td>39.8</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

SAFER-LC workshop, Madrid, 5 February 2020
Effectiveness estimates

<table>
<thead>
<tr>
<th>Safety measure</th>
<th>Accident Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sign ‘Look for train’</td>
<td><5%</td>
</tr>
<tr>
<td>Road markings</td>
<td><5%</td>
</tr>
<tr>
<td>Coloured road markings</td>
<td><5%</td>
</tr>
<tr>
<td>Speed bumps and flashing posts</td>
<td>5–20%</td>
</tr>
<tr>
<td>Funnel effect pylons</td>
<td>0.5–2%</td>
</tr>
<tr>
<td>Noise-producing pavement</td>
<td>2.5–10%</td>
</tr>
<tr>
<td>Proximity message via in-vehicle device</td>
<td><5%</td>
</tr>
<tr>
<td>Blinking amber light with train symbol</td>
<td>5–10%</td>
</tr>
<tr>
<td>Blinking lights drawing driver attention (Perilight)</td>
<td>5–20%</td>
</tr>
<tr>
<td>Traffic lights</td>
<td><5%</td>
</tr>
<tr>
<td>In-vehicle train and LC proximity warning</td>
<td>10–15%</td>
</tr>
<tr>
<td>Rings</td>
<td>2.5–10%</td>
</tr>
<tr>
<td>Additional warning light system at front of the locomotive</td>
<td>15–30%</td>
</tr>
</tbody>
</table>
Effectiveness estimates discussion

▲ An attempt was made to draw **numerical estimates of safety effects** (some uncertainties exist)

▲ The estimates include the following **assumptions:**

▲ **100% implementation coverage**, meaning that all relevant LCs, trains and/or road users are equipped with the system

▲ The functionality and reliability of the system is **100% fail safe** and all the **road users obey to** the provided information and/or warnings

▲ The assumptions used in the calculations are **clearly documented**

▲ The safety estimates can be easily updated if new information become available

▲ **Detailed methodology is documented in the project’s Deliverable D4.4**
Conclusions and recommendations

- The results of the safety effects of piloted measures are **promising**

- Measures with **highest estimated safety benefits** are:
 - **Additional lights at the train front**. Prevention of 15–30% of relevant LC accidents and target rather large share of LC accidents (20–96% depending on the approach).
 - **In-vehicle train and LC proximity warning**. Prevention of 10–15% of relevant LC accidents and targets 22–58% of LC accidents (depending on the approach).
 - **Speed bumps and flashing posts**. Prevention of 5–20% of relevant LC accidents and targets 7–8% of LC accidents (depending on the approach).
 - **Blinking lights drawing driver attention (Perilight)** (targeted to passive LCs). Prevention of 5–20% of relevant LC accidents and targets 37–38% of LC accidents.

- Some of the most promising measures should be tested in **larger scale, real-world** experiments with well-planned research design

- To obtain more information on their effects on road user behavior and thus on road safety, also on long term

- To support the numerical estimation of safety effects of the piloted measures
Thank you

Questions?

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 723205