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Executive summary 

 

This document presents the technical aspects as well as the performance evaluation of the Risk 

Evaluation System (RES) application developed by UTBM in collaboration with CEREMA Toulouse 

within task 3.1 of the work package 3. 

 

The main objective of task 3.1 is to extract models of dangerous behaviors from video recordings 

and construct a database of all detected behaviors for a specific level crossing (LC). Indeed, little 

knowledge is available about precursors, i.e., behaviors that would be indicative of the 

dangerousness of a LC since most databases only contain data about accidents that did occur and 

were investigated as reported in deliverable D1.2 “Level crossing accidents and factors behind 

them”. For this purpose, RES application is dedicated to detect and categorize observed behaviors 

by analyzing the space-time trajectories of LC users with respect to the rail, road and LC 

infrastructures. 

 

Once the system was implemented, several tests were performed using synthetic videos generated 

through simulation in virtual environments. The system evaluation shows the robustness and the 

limit cases of the algorithms implemented in the application. 
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1. INTRODUCTION 

1.1. Objectives of the SAFER-LC project 

Over the past few years, there has been one death and close to one serious injury every day on 

level crossings in Europe. Therefore, SAFER-LC aims to improve safety and minimize risk by 

developing a fully integrated cross-modal set of innovative solutions and tools for the proactive 

management and design of level-crossing infrastructure. 

 

These tools will enable road and rail decision makers to find effective ways to detect potentially 

dangerous collision situations at level crossings, prevent incidents at level crossings by innovative 

design and predictive maintenance methods and mitigate the consequences of incidents/disruptions 

due to accidents or other critical events. 

 

The project will focus both on technical solutions, such as smart detection services and advanced 

infrastructure-to-vehicle communication systems, and on human practices, to adapt infrastructure 

design to end-users and to enhance coordination and cooperation between different stakeholders 

from different transportation modes. 

 

The project will first identify the needs and requirements of rail-road infrastructure managers and LC 

users and then seek to develop innovative smart detection and communication systems, and to 

adapt them for use by all types of level crossing users. 

 

A series of pilot tests across Europe will be rolled out to demonstrate how these new technological 

and non-technological solutions can be integrated, validated for their feasibility and evaluated in 

terms of their performance. 

 

The project will deliver a bundle of recommended technical specifications (for standardization), 

human practices and organizational and legal frameworks for implementation. 

 

Finally, SAFER-LC will develop a toolbox accessible through a user-friendly interface which will 

integrate all the project results and solutions to help both rail and road managers to improve safety 

at level crossings. 

 

1.2. Description of Task 3.1 

Task 3.1 aims at helping rail and road infrastructure managers as well as public authorities to collect 

data about possible dangerous behaviors occurring at LC. Indeed, most available data related to LC 

are collected during investigations when an accident happens and are by definition statistically rare. 

Almost nothing is known about precursors, i.e., behaviors that would be indicative of risks of 

accidents. 
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The objective of Task 3.1 is to develop a software named Risk Evaluation System (RES) that 

analyzes video recordings of activities in the vicinity of level crossings. These videos are expected 

to be collected by fixedly placed cameras that record on a full 24/7 basis. The output of the RES is 

a database of all the potentially dangerous situations or driving behaviors contrary to the traffic laws, 

that are present in the video. 

 

A video presentation of the Task 3.1 is available online1. 

 

1.3. Input data for the RES 

The first challenge we had to overcome in this project is the difficulty to obtain data to test the system. 

Indeed, in order to record videos one has to obtain authorizations from both the rail and road 

infrastructure manager. Additionally, one has to comply with the General Data Protection Regulation 

(EU) 2016/679. This regulation requires either that the data subjects give their consent to the 

collection of their personal data and are given with full access to either correct or delete them, 

otherwise all collected data must be anonymized. The first option would introduce a bias in the study 

rendering the results completely useless, the second would put such a large overhead that a major 

part of the resources dedicated to Task 3.1. would have to be redirected to this operation. Finally, 

even in the case that the collection of data on LC would be GDPR compliant, there is no guarantee 

that hours of recordings would contain a sufficient number of dangerous behaviors to evaluate the 

RES performances in a statistically rigorous fashion. 

 

We chose instead to generate synthetic video data using an advanced simulator that includes 

realistic graphics, physically weather and lighting simulation, accurate vehicle dynamics and AI-

based driver behaviors. This simulator was developed by UTBM’s CIAD laboratory prior to this 

project and has been adapted for the needs of Task 3.1. 

 

1.4. Interactions with other tasks 

Tasks 3.1 and 3.2 are strongly linked, they both attempt to overcome the technical challenge of 

recognizing dangerous behaviors. Though the end goal of both tasks is quite different, we 

collaborated with CEREMA in the development of the Smart Detection System (see deliverables 

D3.1 and D3.5) while they were involved in the development of the RES. 

 

1.5. Structure of the document 

This document is structured into two main sections: 

 

Section 2 describes the technical implementation of the RES application, 

 

                                            

1 https://youtu.be/iZCmZvh-AVY 

https://youtu.be/iZCmZvh-AVY
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Section 3 presents the results of several experiments performed to validate the components of the 

system and the system as a whole. 

 

Section 2 is decomposed into five subsections: 

▪ subsection 2.1 gives an overview of the general architecture of the software,  

▪ subsection 2.2 describes how the first stage of the system, the detection stage, is 

implemented and presents each of the three tasks of this stage: light signal detection, barrier 

angle detection and object detection, 

▪ subsection 2.3 presents the technical details of the implementation of the tracking stage, 

▪ subsection 2.4 does the same for the final stage of the application: the recognition stage, 

▪ subsection 2.5 presents the graphical user interface of the application and provides 

information about the type of data a RES user must input and how, using tools that were 

developed and integrated in the software.  

 

Section 3 is decomposed into four subsections: 

▪ subsection 3.1 describes the process and the algorithms used to generate the synthetic 

videos that were used to evaluate the system in the subsequent parts of the document, 

▪ subsection 3.2 presents the performance evaluation of the detection stage, 

▪ subsection 3.3 does the same for the tracking stage, 

▪ subsection 3.4 shows the results of the performance evaluation of the recognition stage. 

 

Section 4 concludes the document and outline future works to improve overall performances and 

add features to the RES application. 
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2. RISK EVALUATION SYSTEM 

2.1.  Architecture Overview 

The Risk Evaluation System (RES) is an application that analyzes a video recording of a level 

crossing and its surrounding, and extracts data about the occurrence of dangerous and/or 

anomalous behaviors. This analysis is performed off-line in a semi-supervised fashion and focuses 

on general motion, i.e., the analysis operates on space-time trajectories instead of directly analyzing 

the images to recognize activities. The system builds a database of detected dangerous events and 

can export them in a format allowing a human operator to evaluate the dangerousness of the 

observed level crossing, calculate statistics and monitor the evolution of these events over time. It 

can also be used to evaluate the effectiveness of safety measures implemented on the level 

crossing, by monitoring the evolution of the number and type of dangerous behaviors that occur 

before and after the implementation of the measures.  

 

The RES is organized in three consecutive stages. The first stage, called detection stage, takes as 

input the video data to analyze and perform the initial detection of the level crossing state and its 

users. Indeed, in order to classify dangerous behaviors related to the level crossing, it is necessary 

to extract information about the position of the barriers and/or the state of the warning lights. Users 

must be detected and classified into precise categories since the same behavior, mainly in terms of 

motion, may be classified as dangerous only if the user is a pedestrian instead of a road vehicle. 

The results of the detection stage are then used as input by the second stage, i.e., the tracking stage. 

This stage reconstructs space-time trajectories based on the level crossing users detected in each 

frame of the input video during the first stage. It actually correlates the detection in one frame to the 

previous and next ones in order to have a full picture of the motion of a user from the first time it is 

detected to the last frame in which it is visible. 

 

The final stage is the heart of the entire process. It is the recognition stage that takes as input the 

space-time trajectories built by the tracking stage and the state of the level crossing extracted by the 

detection stage. Those inputs are combined to recognize a chosen set of behaviors with various 

levels of dangerousness. It also uses simulation to compare the trajectories with ideal ones, i.e., the 

trajectory a user should have when strictly following the traffic code. This comparison is the basis of 

the anomalous behavior recognition that can be used to extract information about the categories of 

behavior for which no detector currently exists in the application, allowing developers to improve the 

system based on more complete information. 

 

The complete architecture of the system is illustrated in Figure 2.1. 
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Figure 2.1 - Architecture of the Risk Evaluation System 

 

2.2.  Detection Stage 

The detection stage is composed of operations designed to extract information about the state of the 

level crossing during each frame of the input video as well as information about the users. It consists 

of three main modules: light signal detection, barrier angle detection and object detection. 

 

▪ The light signal detection consists in determining whether the light signals of the level 

crossing are active during each frame of the input video. Different light signal types may be 

used in different countries (single blinking light, two-state light, three-state light, etc.), 

therefore the detector was designed to handle all these configurations based on the input the 

RES user provides at the beginning of the process. 

▪ The barrier angle detection consists in estimating the angle of each barrier of the level 

crossing in image-space, i.e., relative to the upward direction in the image. This estimation is 

performed by a deep learning model specifically trained for this task using a large dataset of 

synthetic images. The estimated angle is then mapped to a percentage of “openness” for 

each frame in order to be processed by the subsequent stages. 

▪ The object detection consists in detecting static and dynamic objects, classifying and filtering 

them in order to keep only the relevant classes (pedestrian, car, bus, etc.). This operation is 

performed using a state-of-the-art deep learning detector called YOLO (Redmon et al. 2016). 

Below we describe each module in detail. 

 

2.2.1. Light Signal Detection 
 

Light signal detection consists in determining whether the light signals of the level crossing are active 

during each frame of the input video. 

 

To perform this operation, the RES user must input the rectangular region of interest (ROI) 

corresponding to each traffic light visible in camera reference frame. This ROI is constant for all the 

frames of the video as the camera is static. 

 

https://paperpile.com/c/UGkD3M/4ZsO
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For each ROI, the detector converts the pixel to HSV colorspace. The V values of each ROI in every 

frame form a discrete signal that is first normalized and is then processed in one of two ways 

depending on the type of light signal: 

▪ if the signal is a two-stage or three-stage one, i.e., if the light is supposed to stay on as long 

as the level crossing is closing or closed, then the V value is simply compared against a user 

defined threshold. If the value exceeds the threshold, the signal is considered active, 

otherwise inactive. 

▪ if the signal is a blinking light, the detector uses the Goertzel algorithm (Goertzel 1958), a 

well-known signal processing algorithm. It actually calculates the discrete Fourrier transform 

of a single frequency of the signal of the V value over time. The reference frequency is 

assumed to be known and should be provided by the RES user. The magnitude of the 

reference frequency in the signal is then tested against a user defined threshold. If the value 

exceeds the latter, the signal is considered active, otherwise inactive. 

▪ The active state of each ROI in the input video is finally combined to form a single state signal 

for the whole level crossing using a logical OR operation. This simple rule for combining the 

signal states prevents the detector from not properly recognizing the state of the level 

crossing when a light signal is malfunctioning or is occluded by vegetation, vehicles, or other 

objects.  

 

2.2.2. Barrier Angle Detection 
 

In order to know the state of the level crossing, the system must be able to detect whether the 

barriers are closed or open (if the level crossing has any). The barrier angle detector of the RES is 

based on a deep learning model, namely ResNet50 (He et al. 2016). The model is specifically trained 

to estimate the angle of a barrier within a ROI, relative to the vertical direction of the image. In other 

words, the system estimates the angle of a barrier in image-space, the angle is then mapped to a 

fraction of the full angular range of the barrier. 

 

ResNet50 is a deep residual neural network, i.e., a neural network that uses residual blocks with 

skip connections that jump over some layers in order to avoid the problem of vanishing gradients. 

This model is trained with our own dataset containing 60,000 images of barriers in various positions 

and under different lighting/weather conditions. The images of the dataset are equally distributed in 

60 classes corresponding to the angles of the barrier in the image rounded to the nearest multiple of 

3° from -87° to 90°. 

 

Capturing a large dataset of real-world barriers pictures is a time-consuming process. The dataset 

should contain pictures under various lighting and weather conditions, which would require taking 

pictures at different times of the year, each picture must then be labelled manually. Instead, we 

chose to use synthetic images that could be automatically labelled as they are generated. To 

generate the dataset, a 3D reconstruction of a real level crossing and its surrounding was integrated 

in a simulation software developed in UTBM’s CIAD Laboratory. This simulation software implements 

a physically based model of light scattering in the atmosphere (Elek and Kmoch 2010), and some of 

the algorithms from the Astronomical Algorithms (Meeus 1998) allowing the simulator to determine 

the actual position of the Sun in the sky of the level crossing at any time. The simulator also provides 

https://paperpile.com/c/UGkD3M/8j9y
https://paperpile.com/c/UGkD3M/G5Vf
https://paperpile.com/c/UGkD3M/bMG4
https://paperpile.com/c/UGkD3M/OFXN
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a model for the cloud layer allowing the scene to be simulated under various weather conditions. 

Figure 2.2.2 shows some images from the dataset.  

 

The images of the barriers were captured from various points of view in order to train a general 

model that could classify the barrier angles regardless of the position of the camera relative to the 

level crossing. Once the model returns an estimation of the barrier angle, it is post-processed to filter 

out obvious errors and to ensure coherency of consecutive angles. Let  and , 

respectively the angles of a barrier in fully closed and fully open position, with ,  

the prediction generated by the model, the current barrier angle  is calculated using the following 

equation: 

 

with: 

 

Incoherencies are caused by the fact that the detector does not differentiate between the tip and the 

base of the barrier and returns angles in the range -87° to +90°. If we trained the model in the range 

-180° to +180°, two angles would be valid for the same image, i.e., the actual angle and its opposite. 

Therefore, fine tuning is expected to avoid these ambiguities under the premise that the angle of the 

barrier cannot change greatly during a short period of time. An alternative would be to train the model 

to recognize the tip and the base of the barrier. This solution, however, requires the RES user to 

select a large ROI that includes the full barrier, while our proposed solution only requires a small ROI 

in which the dashed pattern on the barrier is visible. 

 

In order to smooth the angles over time and to interpolate values that are missing when the 

estimation is way off, a simple Kalman Filter (Kalman 1960) is used to track the angle of each barrier. 

 

https://paperpile.com/c/UGkD3M/ag4v
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Figure 2.2.2 - Some images from the barrier angle dataset 

 

2.2.3. Object detection 
 

To recognize dangerous behaviors, the system must be able to detect the users of the level crossing. 

This operation is performed by the object detector based on a deep neural network model called 

YOLO (Redmon et al. 2016). YOLO2 is the state-of-the-art object detector and classifier consisting 

of a single neural network applied to the whole image divided into regions and predicts bounding 

rectangles, classes and probabilities for each region. The bounding rectangles are weighted by the 

predicted probabilities. Figure 2.2.3 shows a typical output of the model in our RES. 

 

                                            

2 https://pjreddie.com/darknet/yolo/ 

https://paperpile.com/c/UGkD3M/4ZsO
https://pjreddie.com/darknet/yolo/
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In this work, we used the version 3 of the model pre-trained on the COCO dataset3. The output of 

the detector is filtered to only keep the classes that are relevant, i.e., classes that correspond to level 

crossing users (pedestrian, bicycle, motorbike, car, truck and bus). 

 

 

Figure 2.2.3 - Example of object detection output 

 

2.3.  Tracking Stage 

The tracking stage is responsible for converting the discrete level crossing user detections for each 

frame produced by the first stage into coherent space-time trajectories for each user. This operation 

requires associating detection of an object across multiple frames. The tracker must overcome 

several challenges / uncertainties: 

▪ a user may not be correctly detected in all the frames in which it is visible, 

▪ a user may not be properly categorized, 

▪ elements in the background may be mistakenly detected as a user, 

▪ bounding rectangles may not match the actual shape of the user in the image. 

 

In order to track an object, a reference position must first be selected. We chose the centroid of the 

bounding rectangle of a detected user since its position is most of the time stable with respect to the 

shape of the object. 

 

The classical approaches for object tracking require using the reference positions of the objects in 

one frame and predicting their positions in the following frames. A Hungarian algorithm-based data 

association algorithm is used to associate detections corresponding to the same physical object 

across frames. 

 

                                            

3 http://cocodataset.org/ 

http://cocodataset.org/
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Tracking can be performed in image-space, or scene-space (i.e., the local 3D coordinate system of 

the scene). We chose to implement our tracking in the latter while ignoring the Z (vertical) coordinate 

in order to reduce computational complexity. Indeed, all level crossing user motions are restricted to 

the ground plane, which we assume to be relatively flat in the surrounding of the level crossing. Also, 

tracking an object in image-space can be challenging since the speed of the object may dramatically 

depending on the position in the image due to the perspective effect of the camera. Tracking objects 

in scene-space, however, requires the reprojection of their centroids from image-space to scene-

space, which necessarily requires information about the depth, in other words the distance between 

the camera and the object. This information is usually obtained using stereoscopic camera which 

records the RGB component of each pixel and estimates its depth. Since the RES makes no 

assumption about the type of camera used to record the input video, it cannot rely on the depth 

information. Instead, centroids are projected onto a virtual plane above ground whose height 

depends on the category of the object. The virtual plane corresponds to the plane in which all 

centroids of objects in the same category are located. For example, centroids of cars are located at 

around 80cm above ground, trucks at around 1.5m, pedestrians at around 90cm, etc. Indeed, this 

reprojection introduces errors in the position of the object, which are added to the error of the position 

of the centroid in image-space (due to incorrect bounding rectangle) and the error possibly 

introduced by a mis-calibration of the camera. However, the categorization of the motion of a user 

in SAFER-LC project is mostly relative to the rail and road infrastructure. We therefore assumed, 

that the impact of the introduced errors is small enough to be ignored. Our tests confirmed this 

hypothesis. One limitation of our approach is that the error in reprojection is dependent on the quality 

of the classification, if a car is mistakenly detected as a truck, the virtual plane will be 70cm too high, 

which may introduce a large error at grazing angles.  

 

Our tracker uses a Robust Adaptive Unscented Kalman Filter (Zheng et al. 2018) to predict the 

position of the centroid of each object in the next frame. The main advantage of this type of filter is 

that it automatically adjusts the covariance matrices based on the provided observations. It makes 

the filter very robust against dynamic noise. The state vector is defined as: 

 

 

where 𝑥 and 𝑦 are the components of the centroid position in the virtual plane and �̇� and �̇� are the 

components of its velocity. 

The state transition matrix is simply defined as: 

 

 

https://paperpile.com/c/UGkD3M/nXpU
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Data association is performed using the Hungarian algorithm that finds the cost minimizing 

assignment. For every tracked object 𝑖 and observation 𝑗, a cost matrix is constructed using the 

following rules: 

▪ if the confidence factor for the detection of observation 𝑗is lower than a user specified 

threshold, the cost is set to an arbitrary large value, 

▪ if the distance in scene-space between the observed position 𝒑𝒋and the position 𝑝�̂�predicted 

by the Kalman filter is larger than a user specified threshold, the cost is set to an arbitrary 

large value, 

▪ the base cost is the image-space squared distance between the observed position 𝒑𝒋and the 

position 𝑝�̂�predicted by the Kalman filter, 

if the category of observation 𝑗is different of the category of the tracked object 𝑖, the base cost is 

squared. 

 

The first two rules are used to ensure that obviously invalid assignments cannot be selected by the 

algorithm. Indeed, if an invalid assignment is selected, it means that two tracks for two different 

objects may be merged into a single one. For each tracked object, if an observation has been 

assigned by the Hungarian algorithm, it is used to update the Kalman filter. Otherwise, the Kalman 

filter uses its predicted position to estimate the state of the object in the next frame. Objects for which 

no observation has been assigned for a user-defined number of consecutive frames are stopped 

and all predicted states since the last observation are removed. Unassigned observations are used 

to create new tracks. 

 

When an observation is added to an active track, the system tries to infer the most probable class of 

the object by selecting the class for which the sum of all scores is the highest. If the new class differs 

from the one the track previously had, the system recalculates the whole track while reprojecting the 

observations on the virtual plane associated with the new class. This, of course, slows down the 

tracking algorithm significantly but it does improve accuracy and reduces fragmentation caused by 

the misclassification of an object. 

 

At the end of the process, only tracks longer than a user-specified threshold are kept and post-

processed. The post-process consists of applying a low-pass filter to remove noises introduced by 

reprojection errors and incorrect bounding rectangles. We used the Savitzky-Golay (Savitzky and 

Golay 1964) filter to smooth the tracks by fitting successive subsets of adjacent points with a low-

degree polynomial using the least-squares method. The window size and the degree of the 

polynomials are adjusted on a per category basis. Indeed, since pedestrians and road vehicles do 

not have the same movement constraints, their trajectories may be better fitted by polynomials of 

different degrees. Also, as the average speed of the pedestrian is unlikely to be close to the average 

speed of road vehicles, different window sizes for the filter need to be used. 

 

Figure 2.3. shows an example of trajectories reconstructed by our system. 

https://paperpile.com/c/UGkD3M/SmrY
https://paperpile.com/c/UGkD3M/SmrY
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Figure 2.3 - Example of multi-object tracking output 

 

2.4.  Recognition Stage 

The recognition stage is the final stage and the key of our system. It consists of using information 

about the state of the level crossing extracted during the detection state, trajectories generated by 

the tracking stage, and information about the road and rail infrastructure provided by the RES user, 

in order to detect some specific behaviors. Additionally, the recognition stage can also flag each 

trajectory that is considered to be anomalous. This anomaly detection is intended to help maintainers 

of the system improve the application by creating new types of detectors based on the observed 

anomalous behaviors. 

 

2.4.1. Anomaly Detection 
 

Anomaly detection is performed by comparing the observed behavior of a level crossing user, 

through its trajectory, to a reference normal behavior. It can only be used for road vehicles because 

of difficulties in simulating the behavior of a pedestrian without knowing its goals, motivations and 

internal (i.e. mental) state. 

 

The reference normal behavior for a road vehicle is generated by replaying the scene in simulation 

while replacing the observed user with a virtual driver that possesses an artificial intelligence that 

strictly respects the traffic law. 
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2.4.2. Simulator architecture 
 

The simulator used to generate the reference trajectories has an architecture similar to the one used 

to generate most of the videos used to test the RES. It is based on the environment model described 

in  (Buisson et al.). This model, represented as a graph of interconnected navigable zones in 2D, 

allows the virtual driver to perceive and act in its environment. In the context of this work, these 

navigable zones represent the lanes of the road network. Navigable zones are connected through 

two different kinds of links: navigation link (i.e. explicit link) and perception link (i.e. implicit link). 

 

The navigation link connects two geometrically adjacent navigable zones allowing a vehicle to move 

from one to the other. While the perception link connects two overlapping navigable zones allowing 

a vehicle located on one zone to perceive objects located on the other. Lanes are geometrically 

modelled as sets of convex polygons constructed from extrusion along the normal of a discretized 

cubic Bézier curve. Figure 2.4.1.1.a illustrates the two steps in the construction of a lane, i.e., lateral 

extrusion then discretization (sometimes called flattening). This modelization is used to speed up 

intersection tests. To reduce even further the computational complexity of the simulation, the 

polygons of the lane are stored in a R-Tree (Guttman and Stonebraker 1983).  

 

Figure 2.4.1.1.a - The two steps involved in the construction of a lane from a Bézier 
curve 

 

Lanes hold information about all the perceptible objects (that we refer to as “entities”) that intersects 

their geometry. Each lane belongs to a “road segment” allowing a driver to access information about 

adjacent lanes in order to plan lane-changing maneuvers. 

 

The road segments are collections of adjacent lanes sharing the same direction, bounded by two 

“road connectors”. Using this architecture, a two-way street must be modelled using two opposite 

road segments. This prevents vehicle on one side of the road to perceive the vehicles on the other 

since there is no connection between the segments, and therefore, forbid overtaking maneuver. 

Although it could be a problem if our objective was to simulate general traffic on rural roads, this 

https://paperpile.com/c/UGkD3M/ojYk
https://paperpile.com/c/UGkD3M/s1dz
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does not affect our work since overtaking is strictly forbidden in the vicinity of a level crossing and 

the simulator only contains law-abiding drivers. 

 

The road connectors are elements that bounds road segments and allow them to be connected to 

construct a network. The connector holds information about all incoming and outgoing connections. 

 

An incoming connection represents the connection of a road segment that uses the connector as its 

end point while an outgoing connection represents a connection with a road segment that uses the 

connector as its starting point. The connections also contain an offset providing flexibility in the way 

the lanes of road segments are connected. For example, suppose a connector contains two 

connections, an incoming one with a road segment A that has three lanes, and an outgoing 

connection with an offset of 1, and with a road segment B that has two lanes. This means that the 

left-most lane of segment B will be connected to the middle lane of segment A, as illustrated in 

Figure 2.4.1.1.b. 

 

Figure 2.4.1.1.b - Connection with offset between two road segments. 

 

The entities are perceptible objects in the simulation. Each entity is modelled as a convex polygonal 

object, usually an oriented rectangle. There are three types of entities in our simulation: the animated 

road users, the vehicle of the simulated virtual driver (artificial intelligence with autonomous 

behavior), and the traffic signs. 

 

The animated road users are objects for which a trajectory has been generated in the tracking stage, 

excluding the one replaced by the virtual driver. At each step of the simulation, their position is 

updated to the one contained in their trajectory at the corresponding frame, along with their 

orientation updated to match the direction of the velocity vector contained in the trajectory. The 

animated road users are associated with a time of arrival and are added to the simulation several 

seconds before their track actually begins, the actual number of seconds is a parameter of the 

anomaly detection phase called “anticipation time”. This is necessary in order to take into account 

the fact that the recording camera has a limited range and cannot cover all entry points of the level 

crossing at the same time. Without this artefact, a virtual driver waiting to cross an intersection would 

not have information about an oncoming vehicle that is outside the field of view of the camera and 

would introduce bias in the simulation, which  prevents it from predicting the reference normal 

behavior.  
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The vehicle of the virtual driver is moved using a standard bicycle model. At each step of the 

simulation, the virtual driver calculates the steering angle, i.e., the mean angle of the steered wheels 

and the longitudinal acceleration of the vehicle. The new position and velocity vector is then 

calculated using the bicycle model. 

 

Our model contains four types of traffic signs, namely speed limit, yield, stop, and level crossing. 

The speed limit sign is straightforward and only contains the maximum allowed speed beyond its 

position. The yield and stop signs contain information about possible directions. A direction is defined 

as a lane beyond the sign toward which a vehicle can navigate. It is used to differentiate between 

left and right turns at an intersection. Each direction is associated with a set of information for each 

conflicting lane: 

▪ the length of the conflict zone, i.e., the length of the overlap of the conflicting lane along the 

direction lane, 

▪ a position from which a driver is supposed to look backward in the graph for a potential 

incoming vehicle that would prevent him from passing the sign, 

▪ a flag that indicates whether queuing in the conflict zone is allowed (for right-handed traffic 

queuing in the conflict zone when turning right is allowed). 

 

The level crossing signs simply hold the current state of the level crossing. They are placed on 

incoming lanes just before the level crossing polygon input by the RES user using the interface 

described in section 2.5.5.   

 

The road network is constructed by the RES user using the interface described in section. Automatic 

construction of the road network takes place once the lanes are input, as detailed below:  

1. The perception links are added to connect each couple of overlapping lanes that do not 

share a connector. 

2. If the RES user inputs the level crossing zone, a level crossing sign is placed on each 

lane that overlaps with this zone and leads to it. 

3. The speed limit signs are placed on their respective lanes. 

4. The yield signs that model priorities are automatically placed using the following rules: 

a. When two lanes overlap, a yield sign is placed on the lane that does not have 

the right of way, just before the conflict zone. 

b. All paths through the conflict zone are calculated and a direction is created for 

each lane that exits the conflict zone. 

c. The length of the conflict zone is calculated by projection along the central 

Bezier curves of the lane in each path. 

d. The queuing flag is set when the conflict represents a merging, i.e., when the 

conflicting lanes share the same end connector, otherwise it is unset. 

5. The yield and stop signs manually placed by the RES user through the interface of the 

application are then added using a procedure equivalent to the previous one except for 

the following aspects: 

a. When the sign is placed on a lane that had previously the right of way, all yield 

signs related to the conflict placed on each conflicting lane are removed. 

b. When the sign is a stop and is placed on a lane that had not previously the 

right of way, the automatically placed yield sign is replaced. 
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2.4.3. Simulation cycle 
 

The simulation for anomaly detection starts at the first frame of the video in which the observed user 

is present. The vehicle, replaced by an entity controlled by the virtual driver is placed at the first 

position in its trajectory, its orientation is set to match the direction of the initial velocity vector in the 

trajectory. The simulation cycle is then composed of the following steps: 

▪ the positions of all animated road users are updated to match the position defined in their 

trajectory at the current frame, 

▪ each lane of the road network is updated accordingly, i.e., the collection of all entities that 

intersect their geometry is reconstructed, 

▪ the virtual driver is executed, using the data-structure of the environment it can perceive 

obstacles and traffic signs, makes a decision on which action to take and compute the 

steering angle and acceleration his vehicle must have for the current step, 

▪ the position and orientation of the virtual vehicle is computed using the bicycle model. 

 

Since some parameters that affect the behavior of the virtual driver are randomly selected, the whole 

simulation cycle must be repeated several times in order to produce a behavior that matches the 

real one as closely as possible. Only the closest “ideal” trajectory is kept at the end of the process.  

 

2.4.4. Virtual driver behaviour 
 

The virtual driver behavior is composed of three main parts, namely longitudinal control, lateral 

control, and traffic sign handling. 

 

The longitudinal control part is responsible for managing the acceleration and speed of the driver 

in accordance with the context and traffic laws. This component takes as input three elements: the 

short-term trajectory of the vehicle, the most immediate obstacle in front of the vehicle and the current 

speed limit. Given these data, the longitudinal controller must first estimate the maximum curvature 

 of the short-term trajectory in order to adjust the speed of the vehicle in anticipation. Maximum 

trajectory curvature is estimated using a recursive procedure based on the Frenet–Serret formula: 

 

Where  is the tangent vector of the trajectory,  is the arc length,  is the normal vector of the 

trajectory and  is the curvature of the curve as illustrated by the figure 2.4.1.3. 
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Figure 2.4.1.3 - The tangent-binormal-normal (TBN) frame of a point on a curve (from 
Wikipedia), we do not use the binormal vector B since the model of the environment is 

in 2D 

 

Using the magnitude of the  and  vectors, the equation can be rearranged as: 

 

 

 

In order to approximate , a look-ahead distance  is calculated as: 

 

With is the minimum look-ahead distance,  is the look-ahead time and  is the longitudinal 

speed of the vehicle. 

 

Assuming the arc length of the vehicle’s reference position on the curve is , a first  is computed 

for the section of the curve between  and . Simultaneously, a circle is fitted between the 

current position of the vehicle and the position at the look-ahead distance on the curve using the 

tangent of the curve at the position of the vehicle as additional constraint. If the curvature of the 

trajectory obtained with the Frenet–Serret is not close enough to the curvature of a fitted circle, the 

trajectory is split at the position defined by the arc length  and the process is repeated on each 

part of the curve until either the ratios between curvatures are sufficiently close to 1 or the length of 

the curve part to evaluate becomes too small. The maximum curvature is the maximum of all  for 

each part of the curve. 

 

Once the maximum curvature is estimated, the longitudinal controller can compute the maximum 

speed at which the vehicle can go by specifying a constraint on the lateral acceleration of the vehicle. 

Lateral acceleration, also called centripetal acceleration, is a parameter of the behavior that defines 

the tolerance of the vehicle driver and its passenger to lateral G-forces. Lateral acceleration  is 

related to the speed of the vehicle and the curvature by the following equation: 
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In order to ensure the driver does not accelerate in the middle of the curve, when the estimated 

maximum curvature decreases, a maximum speed is computed with the same equation, but using 

the curvature of the current turning circle instead of the curvature of the trajectory. Knowing the 

steering angle  of the vehicle, i.e., the mean angle of the steered wheels, the curvature of the current 

turning circle  is determined using the following equation:  

 

Where  is the wheelbase of the vehicle. The maximum speed  at which the driver should drive 

is therefore taken as the minimum between the maximum speed for the current trajectory, the 

maximum speed for the current steering angle and the current speed limit. 

The free-driving acceleration i.e. the acceleration the vehicle should have, if there is no obstacle in 

front of it, is then calculated using the following equation: 

 
with: 

 

where  and  are respectively the preferred acceleration and deceleration of the driver and 

 is the acceleration exponent that controls the steepness of the acceleration curve. 

In case an obstacle blocks the path of the vehicle, whatever it may be (e.g.,  another vehicle, a traffic 

sign or an object on the road, etc.) the longitudinal controller calculates the car-following acceleration 

, i.e., the acceleration the vehicle should have to avoid colliding with the obstacle and maintain 

a safe distance. Many car-following models could be used to calculate this acceleration like the well 

known Intelligent Driver Model (Treiber, Hennecke, and Helbing 2000) or the Gipps’ model (Treiber, 

Hennecke, and Helbing 2000; Gipps 1981). 

We used the car-following model described in (Perronnet 2015), which is defined by the following 

equation: 

 
Where  and  are respectively the current speed of the vehicle and that of the obstacle in front,  

is the headway,  is the minimum separation distance between the vehicle and the obstacle when 

the vehicle is stopped,  is the preferred deceleration of the driver,  is the maximum (supposed) 

deceleration of the obstacle and  is the reaction time of the controller. 

 

The lateral control part of the driver behavior is responsible for computing the mean steering angle 

of the vehicle in order to follow the short-term trajectory. The literature contains many such models 

like the classical pure pursuit model (Carnegie-Mellon University, Robotics Institute and Craig 

Coulter 1992). One drawback of the original pure pursuit model is that vehicles tend to “cut corners” 

at sharp curves when using a large look-ahead distance. 

 

We used our own lateral control model that is based on curvature tracking and uses a pure pursuit 

part to correct path tracking error over-time. Our approach is to follow the curvature of the path as 

closely as possible in order to reduce drift. This can be achieved by aligning the steered wheels with 

https://paperpile.com/c/UGkD3M/FUlp
https://paperpile.com/c/UGkD3M/FUlp+05VJ
https://paperpile.com/c/UGkD3M/FUlp+05VJ
https://paperpile.com/c/UGkD3M/EYqu
https://paperpile.com/c/UGkD3M/dpHM
https://paperpile.com/c/UGkD3M/dpHM
https://paperpile.com/c/UGkD3M/dpHM
https://paperpile.com/c/UGkD3M/dpHM
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the tangent of the trajectory at the projected position of the center of the steered axle. Of course, 

some drift will necessarily occur since our simulation is executed at discrete time steps and the 

sampling rate may not be sufficient when the vehicle moves at high speed. 

 

To correct the angular and lateral errors caused by drifting, we use a variant of the pure pursuit. 

Instead of searching for a look-ahead position on the trajectory itself, we select a point  on a line 

parallel to the tangent of the curve at the reference position of the vehicle projected onto the curve 

 that passes through this point. Figure 2.4.1.3. illustrates the pure pursuit correction.  

 

Figure 2.4.1.3 - Lateral error correction with pure pursuit 

 

Except for the selection of the target point to follow, the pure pursuit algorithm is used in its original 

formulation. The choice of the pure-pursuit look-ahead distance only affects the speed at which the 

driver will correct path tracking errors and can be randomly selected to generate a multitude of 

different behaviors while still ensuring that all vehicles will take sharp turns properly. 

 

The final steering angle to apply to the vehicle is simply the sum of both angles: the angle formed by 

the direction of the vehicle and the tangent to the curve at the projected position of the center of the 

steered axle and the pure pursuit correction angle. 

 

The traffic sign handling part of the behavior is responsible for interpreting traffic signs for the 

driver, changing the current speed limit and creating virtual obstacles when the driver should stop 

before a sign. 

 

Our simulator implements only four kinds of traffic signs: speed limit, stop, yield and level crossing. 

We voluntarily excluded the traffic lights because simulating them would require modifying the RES’s 

architecture in order to extract information about the cycles of the traffic lights around the level 



           
    

 

Deliverable D3.4 – Report on risk evaluation system and use cases for pilot test – 29/10/2019  Page 26 of 56 
  

 

crossing. This would require multiplying the number of cameras that monitor the level crossing in 

order to watch the states of all traffic lights in the vicinity. 

 

▪ The speed limit sign is very straightforward, if the current speed of the vehicle exceeds the 

speed limit of the sign, a virtual obstacle is created at the position of the sign with a speed 

equal to the limit, thus forcing the driver to decelerate until it reaches the correct speed. As 

we have shown previously, the longitudinal controller will make sure the vehicle decelerates 

smoothly until it is very close to the sign. 

▪ The stop and yield signs are practically equivalent except that the driver is forced to stop 

before the stop sign. Force both of these signs, the driver checks the conflicting lanes 

associated with its direction for an oncoming vehicle that would have the right of way. If there 

is, the driver estimates its time to exit the conflict zone associated with the sign using its 

current velocity, preferred acceleration and the length of the conflict zone stored in the sign 

object. Based on this information and the known distance between the oncoming vehicle and 

the conflict zone as well as its current speed, the driver calculates the deceleration that the 

oncoming vehicle should have to avoid colliding with itself if it were to cross the conflict zone 

at that time. If this deceleration is less (in absolute value) than a specified threshold, the 

driver will cross the sign, otherwise a virtual obstacle is created in place of the sign to force 

the vehicle to stop or, at least, decelerate. This threshold that we name minimum imposed 

deceleration is analogous to courtesy and can be randomly selected (in a reasonable interval) 

to generate various driver behaviors. 

▪ The level crossing sign is an artefact that indicates to the driver the position on the road 

where it should stop when the level crossing is closed or closing. As long as a level crossing 

sign is in the forward perception of the vehicle driver, its status is checked and a virtual 

obstacle is created at the exact position of the sign if its warning lights are on or if the barriers 

are closing or closed. Practically, a level crossing sign is handled similarly to a regular traffic 

light in the simulation. 

 

2.4.5. Activity Detection 
 

Activity detection is the last component and the heart of the RES. Based on the extracted trajectories 

of level crossing users and information about the rail and road infrastructure provided by the RES 

user, a set of rules, explained in the following sections, is used to detect some activities which may 

be dangerous. We focused our development on detecting activities related to the crossing of the 

level crossing. The system is able to detect 7 kinds of potentially dangerous crossings: zigzagging, 

wrong-way crossing, illegal lane-changing, abnormal crossing, illegal crossing, stopping and 

queuing. Additionally, the system is also able to detect speeding of a road vehicle even if it is not 

actually crossing the rails. 

 

All crossing-related activities share the same basic principle: the detector searches for the lane on 

which the user is at the moment it enters the level crossing zone as well as the lane on which the 

user is at the moment it leaves the zone. Based on the direction and connectivity of the road segment 

lanes input by the RES user, it is possible to infer the type of behavior the level-crossing user acted 

out while crossing. 
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2.4.6. Zig-zagging activity 
 
A zig-zagging activity is detected when the user enters the level crossing on a lane with an opposite 

direction to its motion and when it leaves the level crossing on a lane that is directed toward its 

motion. Additionally, no valid path must exist between the entry and exit lanes. Figure 2.4.2.1 shows 

examples of zigzagging detected by our system. 

 

 

Figure 2.4.2.1 - Zig-zagging activities detected by the system 

  

2.4.7. Wrong-way crossing activity 
 

 

A wrong-way crossing activity is detected when the user enters and leaves the level crossing on 

lanes with opposite direction to its motion. Additionally, there must exist a direct and valid path 

between the entry and exit lanes. Figure 2.4.2.2. shows examples of wrong-way crossing detected 

by our system. 
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Figure 2.4.2.2 - Wrong-way crossing activities detected by the system 

 

2.4.8. Illegal lane changing activity 
 

An illegal lane changing activity is detected when the user enters and leaves the level crossing on 

lanes that have the same direction as its motion but there is no direct path between these lanes, 

however, there exists a lateral path between them, i.e., the lanes traversed by the user while crossing 

are adjacent. 

 

2.4.9. Abnormal crossing activity 
 

An abnormal crossing activity is the fallback activity that is triggered when the crossing of the user 

matches neither a normal crossing activity nor any of the previously defined activities. It could mean 

that the user entered the level crossing then stopped and backed up in order to leave the zone or 

the user performed an “inverse” zig-zagging, i.e., entered on a valid lane then exited the zone on a 

lane with an opposite direction. 

 

2.4.10. Illegal crossing activity 
 

This activity represents the crossing of the level crossing by any kind of user while the light signals 

are turned on and/or the barriers are closing or closed. This activity can be detected simultaneously 
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with any of the previously described activities. Figure 2.4.2.5 shows examples of illegal crossing 

detected by our system. 

 

 

Figure 2.4.2.5 - Illegal crossing activities detected by the system 

 

2.4.11. Stopping activity 
 

A stopping activity is detected when a user takes more than five seconds to cross the level crossing. 

Note that unlike the queuing activity, the reason for the slow crossing cannot be inferred by the 

system. If the user is a vehicle this activity would be detected when the vehicle stops because of 

stalling or a mechanical malfunction. It could also mean that the vehicle stopped because of an 

obstacle on the road that cannot be detected by the system. Figure 2.4.2.6 shows examples of 

stopping activities detected by our system. 
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Figure 2.4.2.6 - Stopping activities detected by the system 

 

2.4.12. Queuing activity 
 

A queuing activity is similar to a stopping activity. It is triggered when a user takes more than five 

seconds to cross but unlike the stopping activity the system detects the reason for the slow crossing. 

Using the road network data structure that serves as a basis for the simulation for anomaly detection 

plus the tracks of all detected objects, the system can fill up the data structure with the known position 

of all objects at the point in time corresponding to the crossing. The system then searches in front of 

the user responsible for triggering the detector by locally traversing the graph of lanes and looks for 

an object that is distant of less than 25 meters (we assumed that most, if not all, drivers would close 

the gap if the distance was greater in order to avoid being stuck on the LC). If such an object exists, 

the activity is recorded. 

 

 

2.4.13. Speeding activity 
 

A speeding activity, while simple in principle, requires the system to perform a lot of preprocessing 

in order to assign for lane of the road network the portions associated with specific speed limit 

provided by the RES user. While checking the trajectory of an object on the road, the detector looks 

for a frame in which the velocity vector’s magnitude is greater than the speed limit at that position. A 
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tolerance of 5 km/h is added when the speed limit is lower than 100 km/h and 5% when the limit is 

above 100 km/h in order to account for errors in the tracking process (this tolerance is the standard 

for speed cameras). If one such frame is detected, the system will then look forward in time for the 

first frame in which the vehicle is not speeding. If the time elapsed between the first and the last 

speeding frame is greater than a user specified threshold (we chose half a second as a default), the 

speeding activity is recorded. Otherwise, the system checks if the duration of the non-speeding 

period is greater than or equal to the threshold. If the non-speeding duration is too short, the system 

acts as if the user was speeding the whole time. This method of detecting speeding activities 

provides more robustness against short periods of speeding and non-speeding, which may be 

caused by tracking errors.   

 

2.5.  User Interface 

We developed a graphical user interface for the RES in order to make the process user friendly. In 

this section we detail the different tools and dialogs of the application and describe how to use the 

system. This user interface is developed with the version 5 of the Qt framework4 (a cross-platform 

GUI API). 

 

2.5.1. Main interface 
 

The main interface of our RES looks similar to a video player software. Figure 2.5.1. shows the main 

interface and is components: it is composed of a central component (1) onto which the video is 

displayed as well as overlays for the output of each stage of the process. The bottom part (2) is 

occupied by a timeline component and a status bar that displays information when a button or a 

menu is hovered or when an editor action is in progress. The upper part of the main window has a 

menu bar (3) that provides access to all the features of the application and a set of toolbars (4) that 

provides a faster access to those same features.     

 

 

Figure 2.5.1 - The main interface of the RES 

                                            

4 https://www.qt.io/ 

https://www.qt.io/
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The application responds to keyboard shortcuts like the space bar that play/pause the video, arrow 

keys move the position in the timeline. Also, standard keyboard shortcuts like save/save as are also 

recognized. 

 

In order to allow the RES user to input the necessary information about the road and level crossing 

infrastructure, a set of editors was implemented and are described below. 

 

2.5.2. Light signal editor 
 

The light signal editor allows the RES user to specify the ROI of each light signal visible in the video. 

To create a light signal ROI, the RES user must first click on the toolbar button with the following 

icon  then click and drag the mouse cursor onto the video. Once a ROI is created, it can be 

modified by first selecting it with a click and then by moving the handles displayed on the edges of 

the ROI. Figure 2.5.1.1. shows two light signal ROIs, the left one is selected and the editor handles 

are visible. 

 

Figure 2.5.1.1 - Light signal editor in the RES application 

 

2.5.3. Barrier editor 
 

The barrier editor allows the RES user to specify the ROI of each barrier as well as its open and 

close pose in the camera reference frame. Similarly to the light signal editor, to create a barrier ROI, 

the RES user must first click on the toolbar button with the corresponding icon  then click and 

drag the mouse cursor onto the video. The RES user must then move the pivot of the angle gizmos 

and adjust the open and closed handles as illustrated by the figure 2.5.1.2. 
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Figure 2.5.1.2 - Barrier editor in the RES application 

 

2.5.4. Road network editor 
 

The road network editor is composed of two elements: the road segment editor and the traffic sign 

editor. The former is used to draw road segments and connect them to create the network, while the 

second one is used to place traffic signs onto the appropriate segment. 

 

To create a road segment, the RES user must first click on the toolbar button with the corresponding 

icon  then click and drag onto the video. The road segment will start at the position the mouse 

button was pressed and end at the position the mouse button was depressed. Since road segments 

are modeled using cubic Bézier curve, it is often necessary to adjust the direction and length of the 

tangents. When a road segment is selected, a set of handles are displayed on the gizmos 

representing the segment as illustrated by the figure 2.5.1.3.a. Handles in the middle of the segment 

at the beginning and end can be used to move the control points. Handles on lateral extremities of 

the segment can be used to change the width of the segment which is interpolated along the curve. 

Tangents are displayed using a dashed line and the handle at the extremity of this line can be used 

to modify both the direction and length. 

 

In order to be displayed, the cubic Bézier curve of a road segment is first projected onto the ground 

plane in the scene frame, it is then extruded, discretized as a polygon, then projected back to the 

camera frame. 
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Figure 2.5.1.3.a - Road segment editor in the RES application 

 

The traffic sign editor is quite simple in comparison. To create a traffic sign, the RES user must select 

the type of sign by clicking on the appropriate toolbar button ,  or  then click onto the video 

at the position the sign should be placed. The only sign that requires further editing is the speed limit 

sign. When selected, a speed limit sign displays two buttons on the right side of the icon, one with a 

plus sign, the other with a minus sign. These buttons can be clicked on to adjust the speed limit 

associated with the sign with a step of 5 km/h. Figure 2.5.1.3.b. shows two signs placed on a road 

segment, the speed limit sign is selected. 

 

 
Figure 2.5.1.3.b - Traffic sign editor in the RES application 

 

 

2.5.5. Level crossing zone editor 
 

The level crossing zone editor allows the RES user to specify the location of the level crossing in the 

scene frame with respect to the road infrastructure. The application only supports a single level 

crossing zone per project, i.e., one video. Therefore, if the user attempts to create a new zone while 

one already exists, the old zone is automatically removed. To create a level crossing zone, the RES 
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user must first click on the corresponding toolbar button  then click on the video to place the 

points that define the polygon of the zone. The edition of the zone is terminated when the RES user 

clicks on the first point of the zone in order to close the polygon. Figure 2.5.1.4. shows the level 

crossing zone editor in the RES application.  

 

 

Figure 2.5.1.4 - Level crossing zone editor in the RES application 

 

2.5.6. New project dialog 
 

The first step in using the RES is to create a new project. A project is a file that contains all the data 

input by the RES user, the parameters and output of each stage. A project is associated to a single 

video file. To create a new project, the RES user must click on the corresponding toolbar button or 

select the menu item “File/New” and fill out a form as shown in figure 2.5.2. The new project dialog 

asks the RES user to specify the input video file as well as the camera’s intrinsic and extrinsic 

parameters needed to undistort images and project position from the camera reference frame to the 

scene reference frame. 

 

 

Figure 2.5.2 - The project dialog of the RES application 

 



           
    

 

Deliverable D3.4 – Report on risk evaluation system and use cases for pilot test – 29/10/2019  Page 36 of 56 
  

 

2.5.7. Detection stage dialog 
 

The detection stage dialog is displayed when the RES user clicks on the corresponding toolbar 

button . The RES user can modify the parameters of all three parts of the detection stage as 

shown in figure 2.5.3. 

 

For the object detection part, the user can select the three files related to the YOLO model namely 

the HDF5 file containing the weights of the network, the file defining the default anchors and the file 

containing the class names. If the hardware that executes the RES has multiple GPUs, it is possible 

to specify the number of GPU to dedicate to the object detection. The score threshold defines the 

minimum confidence the model must have for a detection to be considered correct and be part of 

the output. The IOU (intersection over union) threshold can be adjusted. This parameter defines the 

ratio of areas for two bounding boxes to be merged. This process is called non-maximum 

suppression and is a common post-process for object detection algorithms.  

 

 
Figure 2.5.3 - The detection stage settings dialog of the RES application 

 

Similarly, to the object detection part, the barrier detection part requires the RES user to input the 

weight file and the file containing the class names. It is also possible to execute the model on multiple 

GPUs in order to improve the computation speed. 

 

The light signal detection part requires the RES user to specify the frequency of the signal if it is 

blinking. A frequency of 0Hz indicates the signal is constant. The RES user must also specify the 

size of the time window used to apply he Goertzel algorithm on the signal as well as the strength 

threshold that triggers the detection. Finally, a check box is provided to normalize the input signal 

before applying the Goertzel algorithm as explained in section 2.2.12.2.1. 

 

2.5.8. Tracking stage dialog 
 

The tracking stage dialog, shown in figure 2.5.4, is displayed when the RES user clicks on the 

corresponding toolbar button . 
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Figure 2.5.4 - The tracking stage settings dialog of the RES application 

 

Only the relevant classes selected by the RES user will be tracked. The central part of the dialog 

contains the parameters specific to each relevant class like the height of the virtual plane in which 

the object centroids are, the low-pass filter parameters. The class selection field only displays 

classes for which at least one detection exists in the project. 

 

The confidence threshold is similar to the one of the detection stages. It allows the RES user to limit 

the observations to those whose score is higher than the threshold. This allows restricting the 

number of observations without the need to redo the detection stage. 

 

The default plane height is used to project the centroid of a bounding box associated to a non-

relevant class. Since an object can be misclassified, non-relevant tracks are only removed at the 

end of the process. 

 

The distance threshold controls the maximum distance the predicted position of the centroid must 

be distant from an observation for the association to be valid. 

 

The minimum length defines the minimum number of consecutive frames a track must have to be 

considered valid and the skipped frame threshold controls the maximum number of consecutive 

frames in which a tracked object must not be detected for the track to be stopped. 

 

The margin parameters allow to specify the portion of the video in which the centroid of a bounding 

box must be for the detection to be considered correct: when an object enters the field of view of the 

camera, its bounding box is sometimes incomplete since most of the object is still not visible by the 

camera and, therefore, the centroid of the box will not match the projection of the object’s centroid 

in the camera reference frame. The detection margin parameters are relative to the image size. 
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2.5.9. Recognition stage dialog 
 

The recognition stage dialog, shown in figure 2.5.5, is displayed when the RES user clicks on the 

corresponding toolbar button . 

 

 

Figure 2.5.5 - The recognition stage settings dialog of the RES application 

 

Activity recognition has no parameter and the dialog only displays the parameters of the traffic 

anomaly detection. 

 

Anomaly detection requires the RES user to select the classes that correspond to road vehicles and 

provide their average dimensions. The RES user can also adjust the number of times a road vehicle 

will be simulated and the threshold distance between the nearest reference normal trajectory and 

the actual one that will trigger the anomaly detection. 

 

The anticipation time parameter, controls the time duration an animated entity is put in the simulation 

before its trajectory actually starts as explained in section 2.4.1. 

  

2.5.10. Activity report 
 

Once all three stages of the RES have been executed on a video, the RES user can export an activity 

report in CSV format by clicking on the toolbar button with the following icon . 
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The activity report file can be opened in a spreadsheet software in order to be further analyzed as 

shown in figure 2.5.6. 

 

 

Figure 2.5.6 - An activity report generated by the RES application in a spreadsheet 
software. 

 

The activity report contains a list of all activities detected by the RES. Each activity has the following 

attributes: the unique identifier of the LC user that is the source of the activity, its type, the time in 

seconds from the beginning of the video at which the activity starts and ends and the status of the 

level crossing at the beginning of the activity, i.e., whether the light signals were active or not and 

whether the barriers were opened or closed. 

 

Some activities may have additional attributes, for example, the speeding activity also has an 

attribute that contains the maximum recorded speed of the LC user.  
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3. EXPERIMENTATIONS AND RESULTS 

The RES was developed with the Python 3.5 programming language, deep learning models are 

executed using the Keras5 framework and the graphical interface is based on the PyQt5 API (a 

Python wrapper for the C++ Qt56 API). All experiments were realized on a Asus ROG Zephyrus S 

GX535 Laptop with an NVidia RTX 2080 MaxQ GPU, an Intel(R) Core(TM) i7-8750H CPU (up to 4.1 

GHz) and 24 Gb of RAM. The barrier angle detector was trained on a Dell Aurora R7 PC with two 

NVidia GeForce GTX 1080 Ti, an Intel(R) Core(TM) i7K-8700K CPU (up to 4.6 GHz) and 32 Gb of 

RAM.  

 

3.1. Synthetic video generation 

In order to evaluate the performance of the RES, we generated a set of videos using our simulator. 

These videos were generated by recording a simulated level crossing in a virtual 3D environment, 

in which a dense traffic crosses a level crossing on a standard 1 by 1 road, i.e., two opposite lanes. 

In order to not introduce a bias in this study, we used different level crossing models and 

environments than those used to generate the dataset for training the barrier angle detector. 

In total, 16 videos were generated each with a 24 minutes duration. Each time the level crossing 

was simulated, two videos were recorded simultaneously from two cameras with the same intrinsic 

parameters that cover both sides of the level crossing, with an overlap centered on the level crossing 

itself. 

 

During the 24 minutes, the time controlling the lighting and weather system in the simulator is 

accelerated by a factor of 30, making the weather and lighting evolve as if 12 hours had passed. The 

vehicle dynamics and behaviors of the simulated driver are unaffected by this time scale. The 

weather evolves from partly cloudy at the beginning of the video, rainy with fog at the middle and 

ends with a clear sky but with the environment still wet. We did not test the RES with snow. Though 

it is possible to record a video with the snow falling, accumulating and melting in our simulator. 

However, we do not currently have a model to simulate the tracks of the vehicle wheels in the snow 

and we judged the videos would not look real enough without it (this could potentially affect the object 

detection negatively). 

 

The traffic is composed of one type of truck and three types of cars. The paint of all the vehicles is 

randomized in order to provide more variants. The traffic generator is set to generate 5% of trucks 

and 95% of cars. 

 

During the recording of the videos, the groundtruth is also recorded using data from the simulation. 

For each video frame, this groundtruth contains the bounding boxes in the camera reference frame 

of all visible vehicles as well as the position and velocity of their centroids in scene reference frame. 

                                            

5 https://keras.io/ 
6 https://www.qt.io/ 

https://keras.io/
https://www.qt.io/
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It also contains the angle of each barrier in the camera reference frame and the state of light signals. 

However, the groundtruth does not take into account occlusions, i.e., vehicle data is recorded in the 

ground truth even if the vehicle is not actually visible in the video because it is hidden behind a truck. 

Because of this, the number of false positives presented in this document is actually higher than 

what it should be, and thus the reported accuracies are actually lower than what they would be if the 

ground truth was manually generated by a human operator. 

 

3.2. Detection stage performance evaluation 

Although the RES is an offline process, the analysis of a video should be completed in a reasonable 

time. The most time-consuming tasks of the process are the object and barrier angle detection 

phases. One way to reduce the overall computational complexity of the analysis is to reduce the 

input video resolution. However, reducing the input video resolution implies a loss of information that 

may also reduce the ability of the system to properly detect objects, track them and then recognize 

dangerous behaviors. 

 

In this section we present the overall performance of the detection stage while investigating the 

impact of reducing video resolution on the components of the RES, namely the object and barrier 

detectors. As we will show in the rest of this document, performance of the tracking and activity 

recognition is highly dependent on the performance of the detectors. The performance of the light 

signal detector is unaffected by the resolution and is therefore excluded from this experiment. 

In order to study the impact of reducing video resolution on the system, we used two 24 minutes 

length videos, recording the same exact scene from both sides of the level crossing, with a resolution 

of 1280x720 pixels (720p) at 30 frames per second.  

 

The two videos were resized using Lanczos interpolation to match the following resolutions: 854x480 

(480p), 640x360 (360p) and 426x240 (240p). 

 

The detection stage was then executed on each video using the same exact parameter set. 

 

3.2.1. Object detector performance 
 

In order to evaluate the performance of the object detection on each video, we used the current 

PASCAL VOC Challenge metrics (Everingham et al. 2010), a very popular set of measures used to 

evaluate and compare object detection algorithms. We used the most recent implementation7 of the 

metrics, which interpolates all data points instead of the 11-point interpolation approach described 

in the paper. The metrics are computed for each of the 43200 frames of the input videos. 

The total number of true positives (TP), false positives (FP), false negatives (FN) and average 

precision (AP in percent) for each class is shown in table 3.2.1.a. 

 

                                            

7 https://github.com/rafaelpadilla/Object-Detection-Metrics 

https://paperpile.com/c/UGkD3M/FSTK
https://github.com/rafaelpadilla/Object-Detection-Metrics
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  Car Truck 

Camera Resolution TP FP FN AP TP FP FN AP 

North 720p 81092 5802 2596 93 1076 3195 1599 27 

South 720p 80335 4015 2686 94 1900 5441 848 54 

North 480p 81521 5309 2167 95 1612 10375 1063 25 

South 480p 81082 4483 1939 97 2017 6636 731 59 

North 360p 80948 9456 2740 91 1799 12496 876 27 

South 360p 80518 8835 2503 94 2135 6549 613 63 

North 240p 73890 6837 9798 85 1951 12763 724 40 

South 240p 77899 5555 5122 93 2033 6325 715 59 

Table 3.2.1.a - Performance of object detection for different video resolutions 

 

The precision/recall curves are shown in figure 3.2.1. 

 

Figure 3.2.1 - Precision/Recall curve for each class 
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Table 3.2.1.b shows the timing, detection speed in frames per second (FPS) and mean average 

precision (mAP) for each test video. 

 

Camera Resolution Timing FPS mAP 

North 720p 2h20m 5 60% 

South 720p 2h20m 5 74% 

North 480p 1h41m 7 60% 

South 480p 1h43m 7 78% 

North 360p 1h23m 8 59% 

South 360p 1h22m 8 79% 

North 240p 1h04m 11 62% 

South 240p 1h05m 11 76% 

Table 3.2.1.b - Timing results for different video resolutions 

 

From these results, we can see that the overall precision of object detection remains stable across 

the video resolution that we tested and is on par with the reported performances8 of YOLO on the 

COCO dataset, although we only detect two classes of objects in our study. However, per-class 

precision varies differently. 

 

Car detection is good at any resolution except for the 240p resolution for which the average precision 

decreases significantly. We can also observe that the number of FP at the 360p resolution almost 

doubles compared to the higher resolutions, this could be a problem for object tracking as it may 

result in many invalid tracks or poor accuracy due to shifting bounding boxes centroids. For this class 

(car), the detector seems to perform better at the 480p resolution. 

 

Truck detection is not very good at any resolution. Average precision is highest at the 240p but the 

number of FP is also very high and would negatively impact tracking. One possible explanation for 

this low performance could be that the 3D model of truck that we used in our simulation is very much 

different from the images of trucks present in the training dataset. For this class (truck), the detector 

seems to perform slightly better at the 240p resolution. 

 

3.2.2. Barrier detector performance 
 

To evaluate the performance of the barrier angle detector, we chose simple metrics. Since we 

approached the barrier detection from a classification perspective, we calculated the categorical 

accuracy (CA), i.e., the percentage of frames in which the detector got the angle right. Since the 

                                            

8 https://pjreddie.com/darknet/yolo/ (see Performance on the COCO Dataset)  

https://pjreddie.com/darknet/yolo/
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classification could be wrong but the predicted angle could be close to the actual one, we also 

calculated the mean (µ), maximum absolute value (max) and the standard deviation (σ) of the 

angular error (in degrees). These three values give us an idea of the distribution of the error. 

Similarly, to the object detection performance, we also investigated the impact of video resolution on 

the error. 

 

In this test, we compared the raw output of the detector to the ground truth, i.e., we did not apply the 

disambiguation rules nor the angle tracking described in section 2.2.2. Table 3.2.2.a shows the 

results on our test videos for each of the two barriers of the level crossing. 

 

  North barrier South barrier 

Camera Resolution CA µ σ max CA µ σ max 

North 720p 85% 1.6 17.5 177 89% 0.4 7.1 171 

South 720p 93% -1 14.9 177 63% -3.2 15.4 171 

North 480p 86% 0.3 15 177 88% 1.85 15 174 

South 480p 90% 1.6 16.5 177 77% -0.8 5.2 165 

North 360p 82% -0.4 16 177 85% 3.7 19.8 174 

South 360p 82% 2.4 20.2 177 76% -0.82 5.5 171 

North 240p 78% 0 23.2 177 73% 8 27.5 174 

South 240p 54% -0.9 29 177 83% -1.3 9.8 162 

Table 3.2.2.a - Performance of barrier angle detection for different video resolutions 

 

The results of this test suggest that the video resolution has little to no effect on the performance of 

the barrier angle detection, except for the lowest resolution on the video of the south camera. 

 

We also evaluated the performance of the barrier detector with filtering and disambiguation. The 

metrics are the same except that we removed the categorical accuracy. Indeed, since the barrier is 

tracked, the filtered angle is a continuous value and not a category. 

 

Results are displayed in table 3.2.2.b. 
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  North barrier South barrier 

Camera Resolution µ σ max µ σ max 

North 720p -0.5 13.6 147 0.2 4.1 107 

South 720p 1.4 9.6 110 -2 9.8 130 

North 480p -1.2 10.1 145 0.8 9.2 131 

South 480p 1.2 7.5 84 -0.6 2.4 75 

North 360p -1.6 12.6 119 2.8 14.8 141 

South 360p 2.69 13.0 102 -0.7 3.2 80 

North 240p -2.5 17.5 125 5.6 19.5 137 

South 240p 4.7 27.1 154 -0.8 5.1 91 

Table 3.2.2.b - Performance of barrier angle detection for different video resolutions with 
filtering and disambiguation 

We can see that our filtering and disambiguation process reduces the standard deviation of the error 

as well as its maximum absolute value. However, significant errors still occur especially when most 

of the barrier is occluded by a large vehicle (like a truck). We expect this problem to be significantly 

reduced by retraining the model with a dataset that contains a greater proportion of images with 

partly occluded barriers. 

 

3.2.3. Light signal detector performance 
 

In order to evaluate the performance of the light detector, we calculated the Pearson correlation 

coefficient between the detected signal and the ground truth. This coefficient is computed using the 

following equation: 

 
where  and  are the amplitudes, respectively, of the detected and ground truth signals samples 

, and  and  are the mean amplitudes. 

 

Results are displayed in table 3.2.4 for both cameras of the test video.  

Camera Correlation 

North 0.98 

South 0.98 

Table 3.2.4 - Pearson’s correlation coefficients between detected light signal state and 
ground truth 
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The detected signal, ground truth and error for the north camera are shown in Figure 3.2.4. Results 

for the south camera are similar. The size of the window for Goertzel algorithm was set to 89 samples 

and the detection threshold to 0.3. 

 

 

Figure 3.2.4 - Light signal state detected, ground truth and error 

 

We can see that the detector performs very well for the whole 24 minutes of the test video on both 

cameras. The errors only occur when the state of the light signal changes and are due to the Goertzel 

algorithm that works with a window. Indeed, when the algorithm detects an oscillation, it is not 

possible to determine precisely at which sample, in the time window, it starts or ends. We chose the 

middle of the window as reference. The error could be reduced by decreasing the window size but 

at the price of higher risks of false negatives. The detector performance is unaffected by the 

resolution of the input video as long as the region of interest of each light signal is non empty. 
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3.3. Tracking stage performance evaluation 

We evaluated the performance of the tracking stage using the py_motmetrics9 Python library. The 

library computes the CLEAR MOT metrics (Bernardin and Stiefelhagen 2008), namely the multiple 

object tracking precision (MOTP) and multiple object tracking accuracy (MOTA). 

 

MOTA combines three error sources: false positives, missed targets and identity switches, while 

MOTP measures misalignment between ground truth and detected tracks. 

 

The library also computes the mostly tracked (MT) measure, i.e., the number of ground-truth 

trajectories that are covered by a track hypothesis for at least 80% of their respective life span, the 

mostly lost (ML) measure, i.e., number of ground-truth trajectories that are covered by a track 

hypothesis for at most 20% of their respective life span, the partially tracked (PT) measure i.e. the 

number of objects tracked between 20 and 80 percent of lifespan, the fragmentation (FM), i.e., the 

total number of switches from tracked to not tracked and the number of ID switches (IDs) (Ristani et 

al. 2016). 

 

Global track quality measures are also provided, including the recall (Rcll), i.e., the number of 

detections over number of objects, precision (Prcn), i.e., the number of detected objects over the 

sum of detected and false positives (FP). We also included the total number of false negatives (FN). 

Tracking performance is evaluated on the same two videos used to evaluate the performance of the 

detection stage as well as the rescaled videos. The number of tracks in the ground truth is 480. 

Results are shown in table 3.3, ↑ indicates that the higher is better and inversely ↓ indicates that the 

lower is better. 

 

Camera North South North South North South North South 

Resolution 720p 720p 480p 480p 360p 360p 240p 240p 

Rcll ↑ 88% 85% 87% 85% 85% 80% 75% 75% 

Prcn ↑ 87% 88% 83% 86% 81% 82% 78% 82% 

MT ↑ 339 342 337 320 339 278 251 263 

PT ↓ 116 103 117 128 103 137 160 130 

ML ↓ 25 35 26 32 38 65 69 87 

FP ↓ 10901 9902 15620 12498 16950 14803 18055 14369 

FN ↓ 11444 12933 11372 12926 12617 17346 21378 21314 

FM ↓ 224 226 191 216 174 198 202 269 

                                            

9https://github.com/cheind/py-motmetrics 

https://paperpile.com/c/UGkD3M/uWxS
https://paperpile.com/c/UGkD3M/ZsRI
https://paperpile.com/c/UGkD3M/ZsRI
https://github.com/cheind/py-motmetrics
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IDs ↓ 47 42 85 38 66 53 71 43 

MOTA ↑ 74% 73% 69% 70% 66% 63% 54% 58% 

MOTP ↓ 1.34 1.35 1.19 1.25 1.16 1.28 1.22 1.37 

Table 3.3. - Tracking performance 

 

We can see that the performance of our tracker is moderately good. Since our approach for the 

tracking algorithm is not as sophisticated as the state of the art, its performance is directly related to 

the quality of the detection. Also, since detection of trucks is poor with the combination of the pre-

trained version of YOLO and our test videos, almost every truck is either misclassified (this implies 

that the trajectory is not projected at the correct height) or barely tracked at all. Although using a 

state of the art tracker would almost certainly improve the precision of object tracking (i.e., reduce 

the distance error between ground truth and detected tracks), it is likely that the most important factor 

to improve the tracking performance is the quality of the object detection. 

 

3.4. Recognition stage performance evaluation 

In order to evaluate the performance of the recognition stage, we applied our activity detectors on 

the ground truth tracks for each test video. The information about the position of the level crossing 

and the road infrastructure, the position of the barriers and light signal states are therefore the same 

for both our ground truth activities and the detected ones. 

 

We executed the detection and tracking stages on 14 videos at the 480p resolution before running 

the recognition stage. These 14 videos show 7 scenes from both the north and south cameras. In 

each scene, every vehicle performs the same exact activity (illegal crossing, queuing, stopping, 

wrong-way crossing, zigzagging). Since wrong-way crossing and zig-zagging can only be performed 

when the traffic is going in one single direction, we generated two separate scenes for both 

directions. Performance of the first two stages on these test videos can be found in Annex A (object 

detection) and Annex B (object tracking). 

 

For the speeding activity, we used the same video as in sections 3.2 and 3.33.3 at the 480p 

resolution. We only changed the speed limit signs present in the project to 20 km/h instead of 50 

km/h. 

 

We used a methodology similar to that used for regular object detection performance evaluation: we 

attempted to match each activity in the ground truth to a detected one. A ground truth activity and a 

detected one are matched if they belong to the same category and if the ratio of intersection over 

union (IOU) of their frame intervals (the interval defined by the first and last video frame in which the 

activity is detected) is greater than 0.5. If a match exists, the number of true positives (TP) is 

incremented and the matched activities are removed from the set so as to not count them more than 

once. If no match exists, the number of false negatives (FN) is incremented. At the end of the 
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process, if there are still some unmatched activities in the detected set, they are counted as false 

positives (FP). We then calculate the precision and recall for each video using the following formulas: 

 

 
 

Results are displayed in tables 3.4, ↑ indicates that the higher is better and inversely ↓ indicates that 

the lower is better. 

 

Video Camera TP ↑ FP ↓ FN ↓ Precision ↑ Recall ↑ 

illegal crossing North 431 3 42 99% 91% 

illegal crossing South 447 5 30 99% 94% 

queuing North 86 24 72 78% 54% 

queuing South 86 14 71 86% 55% 

stopped North 126 9 62 93% 67% 

stopped South 144 5 48 97% 75% 

wrong way (North) North 211 19 15 92% 93% 

wrong way (North) South 212 4 14 98% 94% 

wrong way (South) North 253 3 15 99% 94% 

wrong way (South) South 247 0 19 100% 93% 

zig-zagging (North) North 187 17 45 92% 81% 

zig-zagging (North) South 216 1 12 100% 95% 

zig-zagging (South) North 204 6 41 97% 83% 

zig-zagging (South) South 223 3 20 99% 92% 

speeding10 North 401 156 123 72% 77% 

speeding11 South 358 105 119 77% 75% 

Table 3.4 - Activity recognition performance 

                                            

10 The test video contains 415 instances of speeding and 109 instances of illegal crossing. 
11 The test video contains 416 instances of speeding and 61 instances of illegal crossing. 
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Activity recognition performance is quite good despite the low quality of truck detection and tracking 

(which account for most of the false negatives). False positives are mostly caused by objects that 

are detected multiple times, often with a different class in the same frame. This problem could be 

alleviated with the retraining of the YOLO detector. 

 

Speeding activity is quite challenging for our detector mainly because the speed of an object is 

derived from its position across time. Even with our low-pass filter, the position of an object centroid 

often jitters from frame to frame, which adds a lot of noise to the speed estimation. 
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4. CONCLUSIONS 

In this document, we presented the Risk Evaluation System, an offline process that has been 

developed by UTBM in collaboration with CEREMA of Toulouse, for a comprehensive evaluation of 

the dangerous situations and, thus, human risk, by analyzing a large number of consecutive videos 

recorded at a LC and extracting behaviors. 

 

A trajectory-based approach to behavior recognition was adopted and the system was decomposed 

in three sequential stages: detection stage, tracking stage and recognition stage. 

 

The detection stage uses deep-learning models (YOLO and ResNet50) to detect LC users and the 

angle of the barriers, and it uses a signal processing approach to extract the state of the light signals. 

The tracking stage uses a custom-made scene-space tracker that exploits the fact that the recording 

camera is fixed, and its pose known. 

 

The recognition stage uses the trajectories generated by the tracking stage together with information 

about the road and LC infrastructure in order to detect several dangerous activities (illegal crossing, 

queuing, stopping, wrong-way crossing, zig-zagging, speeding and abnormal crossing). 

Performance of the system was evaluated on a set of synthetic videos that were generated from an 

advanced simulator that combines lighting and weather simulation, realistic vehicle dynamics and 

artificial intelligence-based driver behavior. 

 

Future works include evaluating the performances of the system on video recording of real LCs, 

improving the object detection performance (especially for trucks) by retraining YOLO with a more 

complete training set, improving the tracking performance by including objects appearances in data 

assignment cost measures, and validating our simulation-based traffic anomaly detector. 

 

Additionally, level crossing state detection could be improved. Although our barrier angle detector 

can still estimate the angle of a broken barrier as long as the red and white pattern is still visible on 

the remaining portion, the system could benefit from an actual detection of a barrier being broken. 

This event could be recorded in the database as a dangerous behavior. On some level crossings, 

malfunction of the light signals may change the frequency of blinking lights. Our light signal detector 

would fail in those cases without an intervention of the operator to change the reference frequency. 

A more robust detector that could also detect and record the malfunction would be very useful. 

 

Use cases for pilot tests should focus on the current set of behavior the system can detect. However, 

other types of dangerous behaviors could be simulated in a controlled LC environment to validate 

the anomaly detector. 
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ANNEXES 

A. Performance of the object detection on the activity detection test videos 

 

  Car Truck 

Video Camera TP FP FN AP TP FP FN AP 

illegal crossing North 42298 3333 918 96 512 5614 316 29 

illegal crossing South 42426 2522 543 98 557 5081 266 49 

queuing North 265069 21502 21482 90 6330 19895 1592 55 

queuing South 253114 13018 16175 93 6377 15451 2569 61 

stopping North 185360 10191 5089 96 2981 15901 435 61 

stopping South 208697 7182 5516 97 1680 6531 1607 44 

wrong way 

(North) 

North 30280 1864 1201 93 28 6956 878 0 

wrong way 

(North) 

South 29993 1560 301 97 735 3028 161 72 

wrong way 

(South) 

North 37483 2821 48 98 691 2798 102 78 

wrong way 

(South) 

South 30803 2278 55 99 223 932 542 16 

zigzagging 

(North) 

North 59203 4570 412 98 612 4287 1404 9 

zigzagging 

(North) 

South 72032 3116 261 99 928 3782 1102 32 

zigzagging 

(South) 

North 80122 3971 2702 95 1403 9224 831 50 

zigzagging 

(South) 

South 64883 1611 4253 93 232 4637 1917 1 
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B. Performance of the tracking on the activity detection test videos 

Video illegal 

crossing 

illegal 

crossing 

queuing queuing stopping stopping 

Camera North South North South North South 

Rcll ↑ 80% 81% 85% 89% 94% 93% 

Prcn ↑ 84% 85% 78% 87% 86% 90% 

MT ↑ 302 322 143 153 186 178 

PT ↓ 140 128 55 45 7 13 

ML ↓ 35 27 1 2 1 2 

FP ↓ 6584 6418 72367 37208 30416 21982 

FN ↓ 8800 8467 43179 31936 12168 14346 

FM ↓ 173 306 276 198 95 129 

IDs ↓ 3 1 295 240 195 131 

MOTA ↑ 65% 66% 61% 75% 78% 83% 

MOTP ↓ 1.24 1.32 1.22 1.24 0.92 1 

 

Video wrong way 

(North) 

wrong way 

(North) 

wrong way 

(South) 

wrong way 

(South) 

Camera North South North South 

Rcll ↑ 88% 88% 88% 82% 

Prcn ↑ 80% 90% 87% 88% 

MT ↑ 161 154 200 188 

PT ↓ 43 57 53 63 

ML ↓ 9 2 6 7 

FP ↓ 7122 2963 5109 3407 

FN ↓ 3848 3895 4701 5858 



           
    

 

Deliverable D3.4 – Report on risk evaluation system and use cases for pilot test – 29/10/2019  Page 56 of 56 
  

 

FM ↓ 93 98 69 106 

IDs ↓ 21 10 15 0 

MOTA ↑ 66% 78% 74% 71% 

MOTP ↓ 1.3 0.99 1.08 1.33 

 

Video zigzagging 

(North) 

zigzagging 

(North) 

zigzagging 

(South) 

zigzagging 

(South) 

Camera North South North South 

Rcll ↑ 86% 90% 96% 87% 

Prcn ↑ 85% 90% 81% 86% 

MT ↑ 173 191 216 167 

PT ↓ 49 32 19 59 

ML ↓ 2 1 0 8 

FP ↓ 9448 7771 19362 9771 

FN ↓ 8811 7453 3742 9566 

FM ↓ 85 94 130 134 

IDs ↓ 73 55 120 66 

MOTA ↑ 70% 79% 73% 73% 

MOTP ↓ 1.05 1.01 1.13 1.23 

 


